Tables for Inference Procedures

Column

Dixon Q Test

Critical Values for Dixon Q Test
N \(\alpha=0.10\) \(\alpha=0.05\) \(\alpha=0.01\)
3 0.941 0.970 0.994
4 0.765 0.829 0.926
5 0.642 0.710 0.821
6 0.560 0.625 0.740
7 0.507 0.568 0.680
8 0.468 0.526 0.634
9 0.437 0.493 0.598
10 0.412 0.466 0.568
11 0.392 0.444 0.542
12 0.376 0.426 0.522
13 0.361 0.410 0.503
14 0.349 0.396 0.488
15 0.338 0.384 0.475
16 0.329 0.374 0.463

Probability Formulas

Column

Probability

Conditional probability:

\[\begin{equation*} P(B|A)=\frac{P\left( A\text{ and }B\right) }{P\left( A\right) }. \end{equation*}\] Bayes’ Theorem: \[\begin{equation*} P(B|A)=\frac{P\left(A|B\right) \times P(B) }{P\left( A\right) }. \end{equation*}\]

Discrete Probability Distributions

Binomial probability distribution:

\[\begin{equation*} P(X = k) = ^{n}C_{k} \times p^{k} \times \left( 1-p\right) ^{n-k}\qquad \left( \text{where } ^{n}C_{k} =\frac{n!}{k!\left(n-k\right) !}. \right) \end{equation*}\]

Poisson probability distribution:

\[\begin{equation*} P(X = k) =\frac{m^{k}\mathrm{e}^{-m}}{k!}. \end{equation*}\]

Continuous Probabilitu Distributions

Exponential probability distribution:

\[\begin{equation*} P(X \leq k) = \begin{cases} 1-e^{- k/\mu}, & k \ge 0, \\ 0, & k < 0. \end{cases}\qquad \left( \text{where } \mu = \frac{1}{\lambda}\right) \end{equation*}\]

Regression Formulas

Column

Regression Estimates

Sums of Squares Identities

\[\begin{eqnarray*} S_{XY} &=& \sum x_iy_i - \frac{\sum x_i\sum y_i}{n}\\ S_{XX} &=& \sum x_i^2 - \frac{(\sum x_i)^2}{n}\\ S_{YY} &=& \sum y_i^2 - \frac{(\sum y_i)^2}{n}\\ \end{eqnarray*}\]

Slope Estimate

\[\begin{eqnarray*} b_1 = \frac{S_{XY}}{S_{XX}} \end{eqnarray*}\]

Intercept Estimate

\[\begin{eqnarray*} b_0 = \bar{y} -b_1\bar{x} \end{eqnarray*}\]

Pearson’s correlation coefficient

\[\begin{eqnarray*} r = \frac{S_{XY}}{\sqrt{S_{XX} \times S_{YY}}} \end{eqnarray*}\]

Standard error of the Slope

\[\begin{eqnarray*} S.E.(b1) = \sqrt{\frac{s^2}{S_{XX}}} \end{eqnarray*}\]

where \(s^2 = \frac{SSE}{n-2}\) and SSE \(= S_{YY} - b_1S_{XY}\)

Unsorted